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Calculations of lattice self-potentials and lattice potentials were made for ionic compounds 
with the Ewald method, the formulae being modified to facilitate computer calculation. The 
counting procedure for ionic charges and the collection of unit cells into shells is the same 
as in the Evjen method for potential calculations. The significance of the use of fractional 
charges for ions on planes, edges or corners of the unit cell is shown. There are no 
symmetry restrictions for the application of the formulae. 

After testing the program on some compounds whose Madelung constants are well- 
established in the literature, lattice self-potentials for distinct ion positions, Madelung 
constants and electrostatic energies were calculated for AI203, Cr2Os, c~-Fe203, Ti203, V203, 
CaCI2, CrCI=, BaHCI, BiOBr, PbFCI, SrHI, TmOI, CuFeO2, LiCrO~, NaFeO2, IrF3, MoFs, LaF3, 
PuBr,, VF3, AsI3, BiI3, FeCI,, BaTiO3 (four modifications), TiO= (three modifications). 

Some special applications will be discussed in a second paper. 

1, Introduction 
The calculation of lattice self-potentials and 
Madelung constants has been discussed exten- 
sively [1-3]. In spite of this, the information 
available [2, 4-6] is limited in two respects. (i) 
Most of the calculations were performed for 
fairly simple and rather symmetric compounds. 
Our interest is in more complicated compounds 
with a low symmetry. (ii) Most tables report 
Madelung constants, but not the self-potentials 
for the different ions. It is true that, except for 
the sign, the self-potentials for the positive ion 
equals that of the negative in simple structures 
and that lattice self-potentials may easily be 
calculated from the Madelung constant in such 
cases. This is no longer true in futile, perovskite 
and other structures. To quote one situation: the 
self-potential at the 03- site in perovskites 
depends upon the charges of the cations (3-3, 
2-4, 1-5, or 0-6). These differences in self- 
potential are of importance in the removal of 
oxygen from these compounds. Other applica- 
tion of the differences in self-potential are in 
connection with the occurrence of excess of 

oxygen or deficiency of oxygen in oxides, which 
is often related to the occurrence of p- or n-type 
semi-conduction. Lattice potentials are also 
required in solid state diffusion problems and in 
energy calculations involving interstitial ions. 

For these reasons mentioned above a general 
computer program was developed for the 
calculation of lattice self-potential and lattice 
potential in a point-charge crystal. The proce- 
dure is outlined in section 2. The results of some 
of the calculations are summarised in section 3; 
some special results will be discussed in part 2. 
There are important limitations to the signifi- 
cance of electrostatic potential calculations, which 
assume ionic crystals with point charges. The pre- 
sence of covalent bonds obviously invalidates the 
results although Phillips and Williams [7] and 
Van Arkel [8] have shown that energy values 
thus obtained are in better agreement with 
experimental evidence than might be expected. 
Studies in which actual size and other properties 
of ions have been used include the Shell-model 
studied by Dick and Overhauser [9] and applied 
to barium titanate by Havinga [10], and the 
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other-than-point charges used by Birman [11], 
Slater and DeCicco [12]. Once the potentials 
are calculated, repulsive energy, London-Van der 
Waals forces, zero point energy and crystal field 
corrections must also be considered in calculat- 
ing free energy. (See Tosi [1 ], Waddington [2], 
and Born and Huang [3].) Additional complica- 
tions arise in the calculation of the energy 
needed for the creation of vacancies. (See, for 
example, KrSger [13].) These aspects are not 
discussed in this paper. 

2. Formulae and Procedure 
In a point-charge crystal the electrostatic 
potential for a particular charged point is defined 
as the potential for that site, after the correspond- 
ing charge has been removed. The other points 
remain fixed in their position for the sake of the 
calculation. The electrostatic potential calculated 
in this way is called the self-potential for the 
corresponding site. Lattice self-potentials refer 
to the collection of the lattice self-potentials 
for the distinguishable anion- and cation-sites. 
Obviously terms like "potential, anion-site", etc 
are a short notation for self-potential for an 
anion-site, etc. The electrostatic potential for 
some interstitial location does not need the 
removal of an ion for its calculation. Such a 
potential is referred to as lattice potential. 
Sometimes the term lattice potential is used quite 
generally. Then it describes the total collection 
of (interstitial) lattice potentials and lattice self- 
potentials. 

The calculation of the electrostatic potential 
was done with the Ewald method [14]. In the 
formulation of Tosi [1 ] the formulas are: 

1 t 

s(h) ~-~ r = g-~ 

exp ( -  ~2 ~/2~h~ + 2rrikhf~') 
i 

1 - F ( I  
+ /_, 

(1) 

S(h) = 27~ ~ exp ( -  2~ri ~ .  e~) (2) 

F(t) = 2~r -§ J'o ~ exp ( -  t =) dt (3) 

l e ~ '  - & - ~[ 
t = (4) 

r/ 

The symbols have the following meaning: i~', 
~J, position vector and charge o f  the point at 
which the potential must be calculated; f~, ~ ,  
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position vectors and charges of other ions in the 
unit cell; ~h = hid* q- h2b* q- hag* = vector in 
the reciprocal space with basic vectors ~*, b*, 5" 
and integers hi, h~, ha; & = lid + 12b + lag = 
vector in normal space with basic vectors a, b, e 
and integers /1, l~, 13; 2:h', summation over all 
integers values of hi, h2, ha except h 1 = h2 = h3 
= 0; 2J~, summation over all positions p 
(including p'); 2:z', summation over all integer 
values/1,/2, la, except/1 = / 2  = la = 0 in the case 
where p = p ' ;  ~7, adjustable parameter (see 
below); A, volume of the unit cell. 

In order to write a simpler computer program 
a few changes are introduced. All calculations 
are made for ~ '  = 0. Before each calculation the 
unit cell is shifted so that the point under 
consideration is the origin of the co-ordinate 
system which is at the centre of the new unit cell. 
Co-ordinates are thus limited to those between 
-1- 0.5 and - 0.5. Since this shift is done auto- 
matically in the computer, the most convenient 
selection of co-ordinate axes for input data can 
be used. 

Summations are performed as in Evjen's 
method [15, 16]. First Z'~ is determined for each 
unit cell, next the unit cells are summed over 
"shells". 

The term "shells" refers to both the direct and 
the reciprocal lattice. All unit cells containing at 
least one value I l~ [(J = 1, 2, 3) equal N and 
one value [ h~. [ ( j = 1 ,  2, 3) equal N (but no 
absolute values larger than N) are collected into 
shell N + 1 (the central unit cell is given a layer 
number of one). Consequently, for each unit cell 
described with kl~ there occurs a cell - ~h- This 
means that the complex terms in equation 2 
cancel. Furthermore, since summations both for 
direct space (Z'~') and for reciprocal space (Z'h') 
are done over the same "shell", they can be 
replaced by one summation Z'~'. 

In order to make all unit cells neutral and 
obviate the necessity for special consideration of 
ions which are a part of 2, 4 or 8 unit cells, the 
charge of ions occurring in end planes, edges or 
corners of the new unit cells are counted as 
having �89 �88 and ~ respectively, of their original 
value (Evjen counting). The validity of this 
technique can be shown if one considers, for 
example, a charge at the corner of the unit cell. 
Assume this charge to be split into eight equal 
charges, qm, where q,~ is ~ of original charge, q, 
and that each qm occurs at a distance 1 f,~ I = 8r 
from the original point and in a different octant. 

According to electrostatic theory [17, 18] the 
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potential at point A at a distance [ i ]  from the 
charge q, due to the eight charges is shown by the 
following equation: 

co 

{cos 
m I=1 

(5) 

where p 0  are Legendre polynomials and 
cos (L~, i) is the cosine of the angle between ?m 
and i. Obviously, by making ~r/I ~[ small, one 
can approximate the required potential q/[ ? [, 
since Z'qm = q. This means that calculations can 
be performed as if no charges at corners (also 
edges, end planes) occur by using eight points 
close to the original one, etc. This aspect is 
important in using Evjen fractions and it might 
simplify the description of situations with charges 
on an end plane [16]. 

Several values for the adjustable constant, ~/, 
have been proposed in the literature, including 
that of one-half the atomic distance [1], and 
2(~r)~/a recommended by Dienes [19]. To find a 
value which gives rapid convergence, equation 1 
can be rewritten to include modifications 
previously indicated: 

q ~ ( O ) : ~ [  1 - ~l~r*',~ 7rA(N.,) 2 exp ( -  rr z ~72(N*) 2) 

~q~cos (2~rN* . r~ )  + ( 1  - 3 1 h + ~ t , o )  
i 

q, (1 - F(t))/( I ri + N 1) ] 
2qj 

i - 7r~" ~ ( 6 )  

Here N* : nld* + n2D* + n3g*; N =  nld + n~{~ 
+ n j ;  q~ = charge (Evjen charge) of the ions in 
the unit cell after lattice shifts; qj = charge at 
the origin, if any. In the case of self-potentials 
there is a charge, otherwise the value is zero. 
?~ = x~d + y j) + z~(, where x~, y~, z~ are frac- 
tional co-ordinates of point i; -N*. i~ = inner 
vector product of N* and i~ = n~x~ +nzy~ 
+ naz~; Z'~ = summation over all values n~, nz, n~; 

t ~ r , l , o =  1 for n ~ = n ~ = n a = 0 ;  zero for 
all other combinations of n~.; ~ I h + N I, 0 = 1 
for ?~ = 0 when at the same time nl = n2 = na 
= 0. For all other values of n~ or for i @ j the 
value is zero. 

It can be shown that the value of $(0) in 
equation 6 is independent of the choice of ~7, 
at least within certain limits. A value of ~/ 
acceptable in practical calculations should 
equalise the rate of convergence of the first two 

terms as much as possible. The first term con- 
tains exp ( -  7r 2 ~/2N.2) and a good convergence 
is obtained for large ~7 values. In any given shell, 
the most unfavourable situation occurs when the 
unit cell with the smallest N* is calculated, and 
that obviously depends upon the question which 
of  the values a*, b* and c* is the smallest. Let us 
call the smallest reciprocal lattice dimension 
a'rain, then the best convergence is obtained for 

-- P ,w i th p  > 1. (7) ~r ~N* > 1, or V 7ra*min 

The second term can be analysed in the same 
way. The error function approximates the value 
one for large t-values and thus 1 - F(t) approxi- 
mates zero under this condition. With t----- 
( [ ?i + N ] )/~7, good convergence here re- 
quires a small ~-value. It can be shown that in 
this case the smallest of the three perpendicular 
distances in the unit cell is the applicable 
characteristic value. Such perpendicular dis- 
tances between two end planes in the unit cell are 
calculated from a~ = A/bc sin ~, etc and the 
smallest value of the set will be indicated as 
amin. The condition for fast convergence 
becomes 

] ri ~ - / V ]  Ct~min, 
> 1 , o r  ~7-- w i t h q >  1. (8) 

~7 q 

Giving equal weights to the convergence of each 
series (p = q) leads to 

{ a ,min  ~ ~ 
"t/ = \ "n'a*mi-----~] (9) 

Here ~ is expressed in the dimensions of the unit 
cell rather than atomic distances. This choice is 
better in large unit cells and complicated crystal 
structures where several different interatomic 
distances have been found. 

The potentials calculated in the program are 
expressed in A -1, since charges are introduced as 
charge numbers and distances are expressed in A 
(occasionally, in the case of averaged structures, 
fractions of charges are used). When potentials 
q~j have been calculated for all different points j 
in the unit cell, the total electrostatic energy is 

E (in kcal/mole) = 332 " ~  q~p~j (10) 
2~ " 

Here qj is the total charge number (not Evjen 
charge) of point j ,  Pi the frequency of occurrence 
in the unit cell of point j and K the total number 
of "molecules" in the unit cell. 
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The Madelung constant is defined as 

~ '  qsPs~s (11) 
M ~ =  - a L - ,  2~c 

J 

where M ~ is described relative to the length a of  
the unit cell. Again: expressing M relative to 
other characteristic lengths, like the atomic 
distance, is quite arbitrary in complex structures. 

It  is possible, however, to compare Madelung 
constants M~ expressed relative to some other 
distance r in the same crystal by means of 
formula 12 

M, = (r/a) M =. (12) 

This is obvious from the energy expression: 

E = - 332 M~ 332 M~ 
a r 

(13) 

We are interested in differences between poten- 
tials rather than in the constancy of the Made- 
lung constant for a certain structure. For  that 
reason electrostatic potentials of  lattice sites and 
interstitial sites were calculated, and the Made- 
lung constant (or electrostatic energy of the 
compound) obtained as a by-product. I f  one is 
interested in the energy only, some short cuts can 
be made [20]. 

I t  should be stressed that the calculated po- 
tentials and the energy per mole are independent 
of the choice of the unit cell (contrary to the 
Madelung constant, see [12]). However, when 
one compares compounds with the same struc- 
ture but with a different size of the unit cell, the 
Madelung constant is the same, but the energy 
and the potentials are different (~j. a is constant). 

The computer program was written in 
Fortran IV and was essentially based upon 
equation 6. Calculations were done with the 
Philco 212 computer*. 

3. Results 
3.1. Checking of the Computer  Program 
The simplest way to check some aspects of the 
program is to compare Madelung constants ob- 
tained with the program with well-established 
values reported in the literature. See table I for 
some simple compounds. 

TABLE I Madelung constants for some compounds 
(M.). 

This paper Reported [1, 2] 

NaC1 3.495 3.49513 
CsCI 2.035 2.03536 
CaF~ 11.635 11.63657 
0-6 Perovskite 71.632 71.616 
(ReOa type) 71.6316 

71.6315 
1-5 Perovskite 58.537 58.53535 
(NaTaOa type) 
3-3 Perovskite 44.558 44.544 
(LaA103 type) 44.55489 
Cu20 10.259 10.25946 

This check is inadequate because in the 
calculation of each of the above cubic com- 
pounds, terms containing the cosines of the 
angles become 0 and no check of the validity of  
the other quantities involved in these terms can 
be made. There is also a possibility of  a system- 
atic error in calculating potentials which cancels 
out in summing up the potentials to get the 
Madelung constant. Both of these possible errors 
can be checked doing the calculation with vari- 
ous descriptions of the same compound, that is, 
using different crystallographic axes and thus 
different unit cells, for instance the rhombo- 
hedral and hexagonal descriptions of  a crystal of  
the hexagonal system. A minimum requirement 
for the validity of the calculation is that an ion 
site must have the same potential in all descrip- 
tions~. 

Our check was done with CsC1 in six different 
descriptions and with Cr~Oa, CuzO and CaFz in 
two descriptions. See table I I  for CsCl. 

The unit cells used in table I I  are as follows 
(see also fig. 1). 

Cubic 
a = b - -  c = 4.123 

Tetragonal (2 CsC1) 
a = b = 5.830803 
c=4 .123  

Cs+: 0.6, 0.6, 0.6 
CI - :  0.1, 0.1, 0.1 

Cs+: 0.6, 0.6, 0.6 and 
0.1,0.1,0.6 

C1- : 0.1, 0.6, 0.1 and 
0.6, 0.1, 0.1 

*The authors have available a limited number of copies of a paper describing in detail the program, input data and 
examples of printouts. 

l'his check does not solve the problem of different potential conventions [11 ]. It showed, however, that the correction 
proposed by Dahl [16] for potential calculations by means of the Evjen method, is not entirely correct in all cases. 
Applying this method of checking to a computerised version of his formulae we found that differences might occur 
when non-rectangular angles occur in the unit cell. 
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Rhombohedra l (2  CsC1) 
a = b = c = 5 . 8 3 0 8 0 3  
~ = f l = y = 6 0  ~ 

Cs+: 0.35, 0.35, 0.35 
and 0.85,0.85, 
0.85 

CI - :0 .1 ,0 .1 ,0 .1  and 
0.6,0.6,0.6 

Tr ic l in ic(NaCltype  4 CsC1) 
a = b = c = 7 . 1 4 1 2 5  Cs+: 
~ = f l = 7 0  ~ 34', 
y = 1 0 9 ~  ' 

CI- : 

Monoclinic (1 CsC1) 
a = c = 4.123, Cs+: 
b = 5.830803 C1- : 
~ = f i = 9 0 ~  135 ~ 
Orthorhombic (3 CsCI) 

0.6, 0.6, 0.6 and 
0.6, 0.1, 0.I and 
0.1, 0.6, 0.1 and 
0.1, 0.1, 0.6 
0.1, 0.1, 0.1 and 
0.1, 0.6, 0.6 and 
0.6, 0.1, 0.6 and 
0.6, 0.6, 0.1 

0.1, 0.6, 0.6 
0.1, 0.1, 0.1 

a = b  =4.123,  c =  12.369 Cs+: 0.6, 0.6, 0.26667 
~=]3  = y  =-90 ~ and 0.6, 0.6, 0.6 

and 0.6, 0.6, 
0.9333 

CI- : 0.1, 0.1, 0.1 and 
0.1, 0.1, 0.4333 
and 0.1, 0.1, 
0.76667 

The accuracy of the calculations is generally 
better than 0.1 ~ and that was enough for our 
purpose. In some cases the potentials obtained 
are quite sensitive to small changes in the input 
data. We found, for example, that for CuO the 
use of eight significant figures in giving the 
angles of  the unit cell (in radians) was required 
to get better than 1 ~ precision. However, not all 
situations are so sensitive. 

3.2. Some Results 
Lattice potentials, electrostatic energy and 

Madelung constants for several compounds are 
summarised in table III .  The dimensions of  the 
unit cells and the positions of the atoms were 
taken from Wyckoff 's  collections [21]. Since 
some of the compounds can occur in several 
crystal structures, the Wyckoff page reference 
is listed next to the compound name. The lattice 
parameter a has been listed in the footnotes to the 
table when it is the only variable for the type of 
structure under consideration. In such cases 
potentials and energy for other compounds of 
the same structure can be calculated directly 
from the results given here and the compound's  
own lattice parameter a. 

3.3. Discussion 
In table I I I  there are some compounds which 
have a more or less characteristic structure, that 
is, hardly any other compounds are known to 
have the same structure. Examples are CuO, 
Pb~Oa, ZrO~ (baddeleyite). In other cases many 
compounds are found with the same structure as 
the examples shown in the table: for example 
NaC1, SnO~, etc. The question naturally arises: 
is there a reasonably simple way of using the 
results obtained for one compound to obtain 
potentials and Madelung constants for related 
structures, or is it necessary to run the complete 
computer program for each compound ? 

For structure types where the position of the 
atom is completely fixed except for a proportion- 
ality factor in lattice dimensions, such as NaC1 
types or CsC1, CaF2 or Cu20 types, it can easily 
be seen that the potential varies inversely with 
the lattice parameter a. Where there are one or 
more additional parameters the analysis becomes 
more complex. An example can be found in the 
perovskites (NaTaOz, SrTiOa, etc). Here the 
structure is fixed, but valence state of the ions 
varies from one compound to another [22]. The 
effect of  valence can be shown by fixing the 

T A B L E  II CsCI in different descriptions. 

Unit cell Potential Cs + site Madelung Energy/mole Madelung** 

Cubic - 0.4936 2.0352 163.88 2.0352 
Tetragonal - 0.4936 2.8782 163.88 2.0352 
Rhombohedra l  - 0.4937 2.8788 163.92 2.0352 
Monoclinic (NaC1 description) -- 0.4935 3.5239 163.83 2.0346 
Monoclinic -- 0.4936 2.0352 163.88 2.0352 
Tetragonal  (triple cell) -- 0.4934 2.0345 163.82 2.0345 

Madelung** The first three columns represent data as obtained in the computer. Since the Madelung constant is 
relative to the lattice dimension a, the result will be different whenever another reference distance is chosen. The last 
column shows the values referring all to a of the standard cell. 
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(a) 

/11 I I 

/ I 
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/ 
I/ 

"',L. ~ /  

(b) (c) 

(d) (e) 

! I 
7 4 
I z 
r ,  
~- ~ - 

(9 
Figure 1 Some choices of the unit cell in the CsC! lattice. (a) Standard cubic; (b) tetragonal; (c) rhombohedral; (d) 
triclinic (NaCI type); (e) orthorhombic (triple cell); (f) monoclinic. 

lattice dimensions at one constant value and 
varying only the valence as in table IV, where a 
is arbitrarily taken to be 3.881 in all four cases 
(3.881 is the value that is found in NaTaO3). 

It can be seen that there is a significant vari- 
ation in oxygen potential as the valence of the 
other two ions changes. This variation will 
certainly influence the energy required to create 
an oxygen vacancy. 

Formulae describing the potentials and Made- 
lung constant as a function of one or two para- 
meters can be derived. Waddington [2] surveyed 
some of these relationships in the case of Made- 
lung constants. Similarly, relevant quantities 
can be calculated for artificial situations and 
results plotted. Fig. 3 shows this approach as 
applied to the futile structure (GeO~, SnO2, and 

100 

TiO~ of  table III have this structure). In this 
structure two additional parameters occur: the 
c/a ratio of  the tetragonal crystals and the 
parameter u in the description of the positions: 

M + (000), ~/z-~ _ ~  ~, 
O ~- • (uu0; u + �89 ~ - u, ~) . 

i t  should be noted that Waddington's equation 
(21) gives values for the Madelung constant other 
than those shown in fig. 2. Obviously there is an 
error in this equation as printed since an in- 
crease of the c/a ratio from 0.302 to 0.307 gives 
an increase of the Madelung constant whereas 
its value ought to decrease. 

Groups with even more parameters include 
such examples as the following, all of which are 
included in table III. The number in parenthesis 
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T A B L E  I l l  

,Compound Wyckoff  [21] Potent ia l  Cat ion-s i te  Potent ia l  Anion-s i te  Made lung  Energy/mole  

Reference cons tant  Ma 
Vol. Page  

A1203 a I I  7 - 2.540 1.832 67.258 4354.4 

AsI3 b I I  45 - 1.218 0.586 22.323 898.3 

CI-  0.537 
BaHC1 ~ I 294 - 1.135 H -  0.655 7.633 574.9 

BaTiO8 See table  V 

BiI3 b I I  45 - 1.236 0.576 22.090 902.1 
0 2 .  1.532 

BiOBr I !  45 - 1.893 Br -  0.514 18.129 1537.0 

CaCI~ I 252 - 1.111 0.638 10.918 580.9 

CaF2 a I 240 - 1.385 0.745 11.635 707.1 

Ce~O2S I I  2 - 1.928 (0, 0, 0) 1.048 
(], z 0.64) 1.557 39.830 3302.6 

CrC12 I 253 - 1.185 0.711 11.326 629.4 

Cr203 e I I  6 - 2.426 1.764 62.260 4172.4 

Cr~O3 ~ II  6 - 2.427 1.764 67.268 4174.4 
CsCF I 103 See Table  I I  

CuO I 140 - 1.684 1.662 15.570 1110.9 

Cu2Og 1 331 - 0.886 1.517 10.259 797.7 

CuFeO2 II  292 Cu~+ -- 1.122 
Fe~ + -- 2.191 1.423 36.704 2044.9 

Cu + - 0.860 
CuFeO2 I I  292 Fe3+ -- 2.453 1.690 44.636 2486.8 

FeC13 b I I  45 -- 1.488 0.703 22.218 1091.5 

c~-- Fe203 a I I  7 - 2.416 1.731 67.346 4130.2 

GeO2 h I 251 - 3.240 1.871 44.930 3394.1 

IrE3 i I I  48 - 2.064 0.868 23.834 1460.5 

(2b) 0.747 16.074 1286.5 LaF3 II  60 - 1.894 (40  0.661 

La20~ I I  1 - 2.012 ( l a )  1.384 40.152 3385.6 
(2d) 1.388 

Li + - 1.281 
LiCrO2 II  292 Cr3+ - 2.103 1.692 36.611 2383.3 

MoF~ i I1 48 -- 2.140 0.960 26.347 1543.8 

NaC1 k I 85 - 0.621 0.621 3.495 206.2 
N a  + - 0.763 

NaFeO2 II  292 Fe3+ - 2.510 1.688 42.057 2497.8 

N a  + - 0.864 
NaTaO31 II  393 TaS+ - 3.714 1.789 58.537 5007.6 

CI-  0.534 
PbFCI  I 296 - 1.185 7.508 607.1 

F -  0.753 

0 (1) 1.483 
Pb (1) - 2.276 

II  14 0 (2) 1 390 75.320 3547.0 
Pb (2) - 1.949 

0 (3) 1.473 

Br (1) 0.445 
II  62 - 1.352 Br (2) 0.600 36.027 946.3 

S 2- 1.268 
I 385 Sb ~+ - 1.541 I -  0.481 32.422 1267.9 

S o 0.163 
I 385 Sb § - 0.423 I -  0.428 3.611 141.2 

I 251 - 2.976 1.709 44.385 3110.6 
H -  0.589 

I 295 - 1.109 I -  0.540 7.313 555.5 

Sr ~+ - 1.380 
I I  394 1.653 49.512 4209.4 

TP + - 3.170 

Pb203 

PuBr3 

SbSI 

SbSI 

Sn02 

SrHI  

SrTiO~ TM 
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Compound  Wyckoff [21] Potential Cation-site Potential Anion-site Madelung Energy/mole 
Reference constant M~ 
Vol. Page 

TiO2 n I 251 --  3.107 1.797 45.055 3256.3 
TiO2 ~ I 253 - 3.081 1.839 37.246 3267.0 

( I )  1.800 
TiO2P I 254 - 3.093 (2) 1.820 90.056 3255.5 

Ti~Oz a II  7 - 2.336 1.710 65.934 4030.6 
02-  1.753 

TmOI  I 295 - 1.804 18.258 1556.3 
I -  0.458 

VF3 II  48 - 2.121 0.938 24.659 1523.7 
VzO3 �9 I I  7 - 2.318 1.692 67.929 3993.4 
ZnO I 111 - 1.668 1.668 10.843 1107.8 

03-  (1) 1.586 
ZrO2 r I 244 - 2.938 0 2 (2) 1.698 47.131 3041.0 

(a) Rhombohedra l  description; (b) rhombohedral  description, positions slightly idealised, where x = - 0.25, y = 5/12, 
z = 1/12; (c) H in (2a); (d) a ~ 5.46295; (e) hexagonal description; (f) caesium chloride structure, a = 4.123; (g) 
a = 4.2696; (h) rutile structure; (i) VFa structure; (k) sodium chloride structure, a = 5.62779; (1) cubic modification, 
a = 3.881 ; (m) a = 3.9051 ; (n) rutile; (o) anatase; (p) brookite;  (r) baddeleyite. 

T A B L E  IV Perovskites AB03 a 

Type Composi t ion ~A ~B 40 Madelung constant Energy/mole 

ReO3 (A ~ B6+Oa 2- - 0.340 b - 4.238 1.914 71.692 6127.8 
NaTaO8 A + B 5+ 082- - 0.864 - 3.714 1.789 58.537 5007.6 
SrTiO= A 2+ B 4+ Oa s- - 1.371 - 3.150 1.643 49.512 4091.9 
LaAIO3 A 3+ B ~+ 032-  -- 1.913 --  2.665 1.538 44.558 3811.7 

(a) a is taken to be 3.881 in all four  cases. A at (000), B at (�89189189 0 at (�89189 (�89189 and (0�89189 (b) this site is empty. 

y - 2 " 9 8  1"82 48 "2  

- 2"96  I I 1.80 I I I 47 .8  
' 3 0 2  "305  .307  "302  ' 3 0 5  "507  "502  "305  "507 

c__ = 0 " 5  
(i 

- 2 . 8 9  [ I ~ i t 1"68 ~ 45-9 ' I i 
�9 302  -305  "307  ' 3 0 2  . 3 0 5  "307 " 5 0 2  " 3 0 5  "307 

C 
- -  = 0 " 6  
0 

- 2"79 [ ~ . 

I 
- 2"77 ~ I l 

" 302  "305 "307 
" ~ ' ~ u  

1.59 
e 

�9 J - -  = 0 . 7  
a 

1-57 i l I i 

�9 3 0 2  " 3 0 5  "307  "305  "307 

43 "8  I 

4 3 . 6  L 
"302 

POT. CATION -SITE POT. A N I O N - S I T E  MADELUNG CONSTANT 

Figure 2 Potent ia l  at ca t i on -s i t e  and an ion -s i t e  and M a d e l u n g  cons tan t s  fo r  some  rut i le  s t ruc tu res ,  a = 5,~ in all s i tua -  

t i ons ,  u is pos i t i on  parameter .  
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indicates  the number  of  pa ramete r s  in add i t i on  
to lat t ice pa ramete r  a. 

1. AlzO a, CrzOa, aFezO3, TizOs, VzO3 (3). 
2. AsI3, BiI3, FeC18 (5). 
3. BaHC1, BiOBr, PbFC1, SrHI,  TmOI.  This 

group has the PbFC1 arrangement .  Wyckof f  
quotes abou t  fifty compounds  in this g roup  
(3). 

4. CaClz, CrClz (4). 
5. C u F e Q ,  L i C r Q ,  NaFeOz  (2 or  3 depend-  

ing on whether  ionisa t ion is obvious or  not.  
See Cu 2+ Fe  z+ Oz z- and  Cu + Fe  z+ Oz z- in 
table  III) .  Wyckof f  ment ions  abou t  thir ty-  
five compounds  in this group.  

Obvious ly  one could  make  plots  like tha t  
shown in fig. 2 for  all these si tuations,  bu t  the 
value of  this a p p r o a c h  is doubt fu l  if used solely 
to ob ta in  potent ia l  and  energy values for  o ther  
members  of  a group.  I t  would  be more  efficient 
s imply to feed the da ta  for  the other  c o m p o u n d  
into the computer .  

Problems  in mater ia ls  research are often 
centred a b o u t  small  differences in re la ted com- 
pounds .  Even when they belong to the same 
space group,  three or more  var iables  make  for  a 
unique structure for  each compound .  The  con- 
cept  of  any  constant ,  Made lung  cons tan t  or  
otherwise,  stresses what  is c o m m o n  to the group.  
The Made lung  cons tan t  is, for  instance, of  great  
value in describing the energy o f  highly sym- 
metr ic  compounds  like CsC1, NaC1, etc. In  less 
symmetr ic  compounds ,  those with several pa ra -  
meters,  the difference in potent ia ls  a t  lat t ice sites 
and  inters t i t ia l  sites is f requent ly  more  germane 
to the purpose  of  the research. A n  example  is 
found  in PaTiO3 with its four  structures.  The 
results of  calculat ions  are repor ted  in table  V. 

I t  is stressed tha t  the appearance  o f  mater ia l  
in table  I I I  should  not  be taken  to mean  tha t  the 
c o m p o u n d  real ly is ionic. Some quite cer ta inly 
are covalent  in character .  SbSI,  for  example,  can  
be considered as having SbS chains,  separa ted  by  

I -  ions. (The same structure occurs with some 
other  Sb and Bi compounds . )  The calcula t ions  
are significant only  in tha t  they show tha t  the 
potent ia l  a t  the I -  site is not  par t i cu la r ly  
dependent  on the separa t ion  o f  charges in the 
Sb/S chains,  as long as the effective charge  
remains  the same. The potent ia l ,  q~(I-), is 0.481 
i f  chains are  assumed to be Sb 3+ S 2+ and 0.428 
i f  Sb+S ~ chains are postula ted.  
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